巴马腕表批发销售联盟

物理学史-量子力学-现代量子力学

时间起源2019-09-12 07:09:29


矩阵力学

有别于旧量子论的现代量子力学的诞生,是以1925年德国物理学家维尔纳·海森堡建立矩阵力学和奥地利物理学家埃尔温·薛定谔建立波动力学和非相对论性的薛定谔方程,从而推广了德布罗意的物质波理论为标志的。矩阵力学是第一个完备且被正确定义的量子力学理论,通过将粒子的物理量阐释为随时间演化的矩阵,它能够解释玻尔模型所无法理解的跃迁等问题。矩阵力学的创始人是海森堡,另外他的德国同胞马克斯·玻恩和帕斯库尔·约当也做出了重要工作。


1924年,23岁的海森堡还只是哥廷根大学未取得终身教职的一名年轻教师,他于同年九月应玻尔的邀请来到哥本哈根进行六个月的交流访问,此间海森堡受到了玻尔和他的学生汉斯·克拉莫斯等人的深刻影响。1925年海森堡回到哥廷根,在五月之前他的工作一直是致力于计算氢原子谱线并试图只采用可观察量来描述原子系统。同年六月为了躲避鼻炎的流行,海森堡前往位于北海东部并且没有花粉侵扰的黑尔戈兰岛。在那里他一边品味歌德的抒情诗集,一边思考着光谱的问题,并最终意识到引入不可对易的可观察量或许可以解决这个问题。其后他在回忆中写道:“当时正是凌晨三点,最终的计算结果即将出现在我面前,起初这让我深深震撼了。我非常兴奋以至于无法考虑睡觉的事,于是我离开房间前往岩石的顶端等待朝阳。”回到哥廷根后,海森堡将他的计算递交给沃尔夫冈·泡利和马克斯·玻恩评判,他对泡利附加评论说:“所有内容对我来说都还很不清楚,但似乎电子不应当在轨道上运动了”。在海森堡的理论中,电子不再具有明确的轨道,他从而意识到电子的跃迁几率并不是一个经典量,因为在描述跃迁的傅里叶级数中只有频率是可观察量。他用一个系数矩阵取代了经典的傅里叶级数,在经典理论中傅里叶系数表征着辐射的强度,而在矩阵力学中表征强度的则是位置算符的矩阵元的大小。海森堡理论的数学形式中系统的哈密顿量是位置和动量的函数,但它们不再具有经典力学中的定义,而是由一组二阶(代表着过程的初态和终态)傅里叶系数的矩阵给出。玻恩在阅读海森堡的理论时,发现这一数学形式可以用系统化的矩阵方法来描述,这一理论从而被称作矩阵力学。于是玻恩和他的助手约尔当一起发展了这种理论的严谨数学形式,他们的论文在海森堡的论文发表六十天后也公布于众。同年11月16日,玻恩、海森堡和约尔当三人又联合发表了一篇后续论文,论文将情形推广到多自由度及含有简并、定态微扰和含时微扰,全面阐述了矩阵力学的基本原理:


  1. 所有的可观察量都可用一个厄米矩阵表示,一个系统的哈密顿量是广义坐标矩阵和与之共轭的广义动量矩阵的函数。

  2. 可观察量的观测值是厄米矩阵的本征值,系统能量是哈密顿量的本征值。

  3. 广义坐标和广义动量满足正则对易关系(强量子条件)。

  4. 跃迁频率满足频率条件。


如上所述,海森堡的矩阵力学所基于的观念是,电子本身的运动是无法观测的,例如在跃迁中只有频率是可观察量,只有可观察量才可被引入物理理论中。因此如果不能设计一个实验来准确观测电子的位置或动量,则谈论一个电子运动的位置或动量是没有意义的。1927年,海森堡从位置和动量的共轭对易关系推导出了两者的不确定性之间的关系,这被称作不确定性原理。海森堡设想了一个理想实验,即著名的海森堡显微镜实验,来说明电子位置和动量的不确定性关系;以及通过施特恩-盖拉赫实验来说明自旋的几个正交分量彼此之间的不确定性关系。不过,玻尔虽然对海森堡的不确定性原理表示赞同,却否定了他的理想实验。玻尔认为不确定性原理其实是波粒二象性的体现,但实验观测中只能展示出粒子性或波动性两者之一,即不可能同时观测到电子的粒子性和波动性,这被玻尔称作互补原理。海森堡的不确定性原理、玻尔的互补原理和波恩的波函数统计诠释以及相关联的量子观念,构成了被当今物理学界最为认可的量子力学思想——哥本哈根诠释。


波动力学

1925年,在苏黎世大学担任教授的埃尔温·薛定谔读到了德布罗意有关物质波理论的博士论文,薛定谔本人又受爱因斯坦波粒二象性等思想的影响颇深,他从而决定建立一个描述电子波动行为的波方程。当时由于人们还不十分理解电子自旋这一量子力学中最大的相对论效应,薛定谔还无法将波动方程纳入狭义相对论的框架中,他从而试图建立了一个非相对论性的波方程。1926年1月至6月间,薛定谔发表了四篇都名为《量子化就是本征值问题》的论文,详细论述了非相对论性电子的波动方程、电子的波函数以及相应的本征值(量子数)。哈密顿曾认为力学是波动理论在波长为零时的极限情形,而薛定谔正是受此引导发展了这一观念,他将哈密顿力学中的哈密顿-雅可比方程应用于爱因斯坦的光量子理论和德布罗意的物质波理论,利用变分法得到了非相对论量子力学的基本方程——薛定谔方程。


薛定谔发现这个定态方程的能量本征值正对应着氢原子的能级公式,由此他得出,量子化条件是不需要像玻尔和索末菲那样人为引入的,它可以很自然地从本征值问题推出。在三维球坐标系下将薛定谔方程应用于氢原子可以得到三个量子化条件:轨道量子数(决定电子的能级)、角量子数(决定电子的轨道角动量)和磁量子数(决定电子在垂直方向的磁矩)。在其后的论文中,他分别讨论了含时的薛定谔方程、谐振子、微扰理论,并应用这些理论解释了斯塔克效应和色散等问题。薛定谔把自己的理论称作波动力学,这成为了现代量子力学的另一种形式。特别是,薛定谔的理论是以一个偏微分方程为基础的,这种波动方程对人们而言相当熟悉,相比之下海森堡的矩阵力学所采用的数学形式则不那么易懂(在海森堡的理论之前,矩阵只是数学家的玩具,从未被引入任何物理理论中)。因此一开始波动力学比矩阵力学要更受科学界的青睐,爱因斯坦、埃伦费斯特等人对薛定谔的工作都非常赞赏。直到1926年薛定谔在研究海森堡的理论之后,发表了《论海森堡、玻恩与约尔当和我的量子力学之间的关系》,证明了两种理论的等价性;不过,对当时大多数的物理学家而言,波动力学中数学的简明性仍然是显而易见的。


波动力学建立后,人们还一直不清楚波函数的物理意义,薛定谔本人也只能认为波函数代表着粒子波动性的振幅,而粒子则是多个波函数所构成的波包(所谓电子云模型)。1926年,玻恩在爱因斯坦光量子理论中光波振幅正比于光量子的几率密度这一观点的启发下,联系到量子力学中的散射理论,提出了波函数的统计诠释:波函数是一种几率波,它的振幅的平方正比于粒子出现的几率密度,并且波函数在全空间的积分是归一的。玻恩由于波函数的统计诠释获得了1954年的诺贝尔物理学奖。


相对论量子力学

1921年,德国物理学家阿尔弗雷德·朗德指出反常塞曼效应意味着电子的磁量子数只能为半整数。1924年,奥地利物理学家沃尔夫冈·泡利提出这个半整数代表着电子的第四个自由度,并在此基础上提出了泡利不相容原理。泡利最初未能对这第四个自由度的物理意义作出解释,但其后美国物理学家拉尔夫·克罗尼格提出这个自由度可以看作是电子的一种内禀角动量,相当于电子在沿自己的轴旋转,然而泡利对此不以为然,他很反对将这种经典力学模型引入量子力学中。不过仅半年后,埃伦费斯特的两个学生:乌伦贝克和古兹米特再次提出了类似的自旋假说,两人在埃伦费斯特的推荐下投稿给《自然》杂志。尽管洛伦兹从这种假说得出电子表面速度将远远大于光速,但其后由于玻尔、海森堡和英国物理学家卢埃林·托马斯等人在相对论力学下的计算都支持这一理论,海森堡和约尔当用矩阵对自旋做了充分的描述,自旋模型最终得到了充分肯定。不过,泡利始终反对这种“电子自转”的经典模型,而他最终也真正做到了将电子自旋和自转严格区别:自旋并不是电子做的经典的自转,它应当理解为电子的一种内禀属性,这种属性被泡利用量子化的矩阵来描述。泡利后来将自旋的概念引入薛定谔方程中,得到了在外加电磁场作用下考虑电子自旋的量子力学波动方程,即泡利方程。


1928年,英国物理学家保罗·狄拉克在泡利方程的基础上,试图建立一个满足洛伦兹协变性并能够描述自旋为1/2粒子的薛定谔方程,这么做的部分动机也是试图解决描述自旋为零的相对论性波方程——克莱因-戈尔登方程所出现的负值概率密度和负能量的问题。狄拉克考虑到薛定谔方程只含对时间的一阶导数而不具有洛伦兹协变性,他从而引入了一组对空间的一阶导数的线性叠加,这组叠加的系数是满足洛伦兹协变性的矩阵。由于系数是矩阵,则原有的波函数必须改为矢量函数,狄拉克将这些矢量函数称作旋量。如此得到的波动方程被称作狄拉克方程,它成为了相对论量子力学的基本方程,同时它在量子场论中也是描述自旋为1/2粒子(夸克和轻子)的基本旋量场方程。在此项工作中狄拉克首创了“量子电动力学”一词,他从而被看作是量子电动力学的创始人。狄拉克发现,虽然旋量的概率密度可以保证为正值,方程的本征值却仍然会出现负能量。在理论上如果电子可以拥有能级低至静止能量负值的负能量态,则所有的电子都能通过辐射光子而跃迁到这一能级,狄拉克由此推算出在这种情形下整个宇宙会在一百亿分之一秒内毁灭。狄拉克对这一问题的解释是著名的狄拉克之海:真空中排满了具有负能量的电子,在泡利不相容原理的制约下正能量的电子无法跃迁到负能量态。同时,狄拉克还由此提出了反电子的存在,它同时具有负能量态电子的所有相反属性,即具有正能量和正电荷。


1932年狄拉克关于反物质存在的预言通过美国物理学家卡尔·安德森使用宇宙射线制造出正电子的实验得到了证实。


1930年,狄拉克出版了他的量子力学著作《量子力学原理》,这是整个科学史上的一部里程碑之作,至今仍然是流行的量子力学教材之一。狄拉克在这部著作中将海森堡的矩阵力学和薛定谔的波动力学统一成同一种数学表达:


  1. 用相空间中的厄米算符来表示可观察量,并用希尔伯特空间中的矢量来表示系统的量子态。

  2. 对可观察量而言,厄米算符的本征态构成一个正交归一的完备坐标系,所有可观察量的测量值都是厄米算符的本征值,对系统的测量会导致系统的波函数坍缩到对应的本征态。

  3. 共轭算符之间满足正则对易关系,从而可得到不确定性原理。

  4. 量子态随时间的动力学演化可由含时的薛定谔方程描述(薛定谔绘景),算符随时间的动力学演化可由类似的海森堡方程描述(海森堡绘景),这两者是等价的。


1939年狄拉克引入了他的数学符号系统——狄拉克符号,并应用到《量子力学原理》中。直到今天,狄拉克符号仍然是最广泛使用的一套量子力学符号系统。


玻尔-爱因斯坦论战

量子力学的确令人印象深刻,但内心中有个声音告诉我这不符合实际情况。这个理论解释了很多,但没有真正让我们离那个“老家伙”的秘密更近一步。我,无论如何都有理由相信,他不掷骰子。

— 爱因斯坦于1926年12月4日写给玻恩的信


玻尔、海森堡等人建立哥本哈根诠释之后,立刻遭到了以爱因斯坦为首的一批物理学家的反对。爱因斯坦非常反对哥本哈根学派所作出的波函数的诠释、不确定性原理以及互补原理等观点。在爱因斯坦看来,电子的这种“自由意志”行为是违反他所钟爱的因果律的,他从而认为波函数只能反映一个系综的粒子的量子行为,而不像是玻尔所说的一个粒子的行为。这种矛盾引发了分别以玻尔和爱因斯坦为代表的两种学说的论战,时间长达半个多世纪之久。


1927年的第五次索尔维会议上双方爆发了公开的论战。德布罗意在会中发表了他原创的导航波理论,其可以对于波函数的统计诠释给出另一种替代诠释,然而这理论遭到玻尔与薛定谔等人大肆抨击。德布罗意因此期望爱因斯坦给予支持,但是爱因斯坦选择保持沉默。其后玻恩和海森堡发表了他们关于矩阵力学与的观点,并在最后陈述说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。”爱因斯坦除了对于统计诠释发表一些简单的反对意见以外,并没有在会议中发表什么意见,但在住宿旅馆的餐厅里,他与玻尔等人进行了多次激荡的研讨,爱因斯坦提出一个理想实验:爱因斯坦狭缝,用来质疑位置-动量不确定性原理的正确性。后来玻尔和海森堡等人对爱因斯坦的理想实验做了批判,但爱因斯坦并没有因此改变自己的观点。于是在三年后的第六次索尔维会议上,爱因斯坦再次提出了另一个理想实验:爱因斯坦光盒,用来说明时间-能量不确定性原理的不正确。这一理想实验起初让玻尔非常困扰,但经过一天的思索,他发现爱因斯坦忽略了测量时的广义相对论效应导致的时间不确定性,从而不确定性原理仍然成立。


两次挑战不确定性原理的失败尝试,迫使爱因斯坦认识到量子力学理论本身是自洽的,他从而转向讨论量子力学的完备性。1935年爱因斯坦和美国物理学家鲍里斯·波多尔斯基、纳森·罗森联合发表了论文《能认为量子力学对物理实在的描述是完备的吗?》,提出量子力学对物理实在的描述是不完备的。为了说明这一点,他们提出了一个著名的理想实验:爱因斯坦-波多尔斯基-罗森佯谬(也称作EPR佯谬)并从这个实验得到结论:或者,在量子力学中波函数对物理实在的描述是不完备的;或者,两个对应于不可对易算符的物理量不能同时是实在的。而后他们通过分析指出,如果否定第一点则也必须否定第二点,从而波函数对物理实在的描述是不完备的。不过在玻尔看来,从实证主义的意义上说这种佯谬根本不成立,因为哥本哈根学派认为只有可观测才意味着物理实在。尽管如此,爱因斯坦和玻尔两个人终生都没有被对方说服。同年,爱因斯坦和薛定谔就EPR佯谬在书信中交换了意见。薛定谔为了进一步显示量子力学的不完备性,将量子力学应用到宏观效应中,从而构思了著名的薛定谔猫思想实验。


1953年,英国物理学家大卫·玻姆同样认为哥本哈根诠释对物理实在的解释是不完备的,需要附加的参量来描述,他从而提出隐变量理论;1965年,北爱尔兰物理学家约翰·贝尔在此基础上提出贝尔不等式,这为隐变量理论提供了实验验证方法。从二十世纪七十年代至今,对贝尔不等式的验证给出的大多数结果是否定的;即使如此,玻尔-爱因斯坦论战的结果至今还未有最终的定论。






Copyright © 巴马腕表批发销售联盟@2017